unbounded quantifier - definição. O que é unbounded quantifier. Significado, conceito
DICLIB.COM
Ferramentas linguísticas em IA
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:     

Tradução e análise de palavras por inteligência artificial

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é unbounded quantifier - definição

Lindstrom quantifier; Lindstroem quantifier

Quantifier (logic)         
  • [[Augustus De Morgan]] (1806-1871) was the first to use "quantifier" in the modern sense.
  • url=https://www.researchgate.net/publication/366867569}}
</ref>
  • Syntax tree of the formula <math> \forall x (\exists y  B(x,y)) \vee C(y,x) </math>, illustrating scope and variable capture. Bound and free variable occurrences are colored in red and green, respectively.
LOGICAL OPERATOR SPECIFYING HOW MANY ENTITIES IN THE DOMAIN OF DISCOURSE THAT SATISFY AN OPEN FORMULA
Logical quantifier; Quantificational fallacy; Solution quantifier; Quantification (logic); Quantifiers (logic); Set quantifier; Range of quantification
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier \forall in the first order formula \forall x P(x) expresses that everything in the domain satisfies the property denoted by P.
Unbounded operator         
LINEAR OPERATOR DEFINED ON A DENSE LINEAR SUBSPACE
Closed operator; Closeable operator; Closable operator; Closed unbounded operator; Closure of an operator; Unbounded linear operator
In mathematics, more specifically functional analysis and operator theory, the notion of unbounded operator provides an abstract framework for dealing with differential operators, unbounded observables in quantum mechanics, and other cases.
Filter quantifier         
In mathematics, a filter on a set X informally gives a notion of which subsets A \subseteq X are "large". Filter quantifiers are a type of logical quantifier which, informally, say whether or not a statement is true for "most" elements of X.

Wikipédia

Lindström quantifier

In mathematical logic, a Lindström quantifier is a generalized polyadic quantifier. Lindström quantifiers generalize first-order quantifiers, such as the existential quantifier, the universal quantifier, and the counting quantifiers. They were introduced by Per Lindström in 1966. They were later studied for their applications in logic in computer science and database query languages.